If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+6p=144
We move all terms to the left:
5p^2+6p-(144)=0
a = 5; b = 6; c = -144;
Δ = b2-4ac
Δ = 62-4·5·(-144)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-54}{2*5}=\frac{-60}{10} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+54}{2*5}=\frac{48}{10} =4+4/5 $
| 12(3-2)=x | | -84=-6(-5+x) | | X^-6x=2 | | –4=2t–2 | | 4x+2=9x-6/2 | | 15-4k=-8k-1 | | x−14=27 | | 2y+20+3y=5y+20 | | 4c–6=2 | | 4(3x+8)=4(2x+9) | | 3g-5=16 | | 20-4x=50-24x | | 9-6a=–10 | | (4x/3)-(2x+3)/6=9/2 | | -3(1-x)=2x | | 62-x=72-2x | | 5n=-56n+29 | | 3(9+4d)=33 | | 4x/3-(2x+3)/6=9/2 | | 2x+1=2(3+x) | | 7n-19=5n | | 62-x+72-2x=180 | | 75n=96 | | 2(11+3y)=46 | | 121/2*n=10 | | 3x-41=2x+8 | | 2(x-)+2=4x-2 | | 4x+2=5x-11 | | 3x-41=2x=8 | | a-a(.25)-a(.05)=103775.54 | | 18(2x+4)-4x=0 | | a-a(.25)-a(.05)=102843.18 |